

Знакомство с платформой еРМР

Краткая история Cambium Networks

Портфолио Cambium Networks

Point-to-Point, PTP Радиомосты / РРЛ Point-to-Multipoint,
PMP
Сети доступа

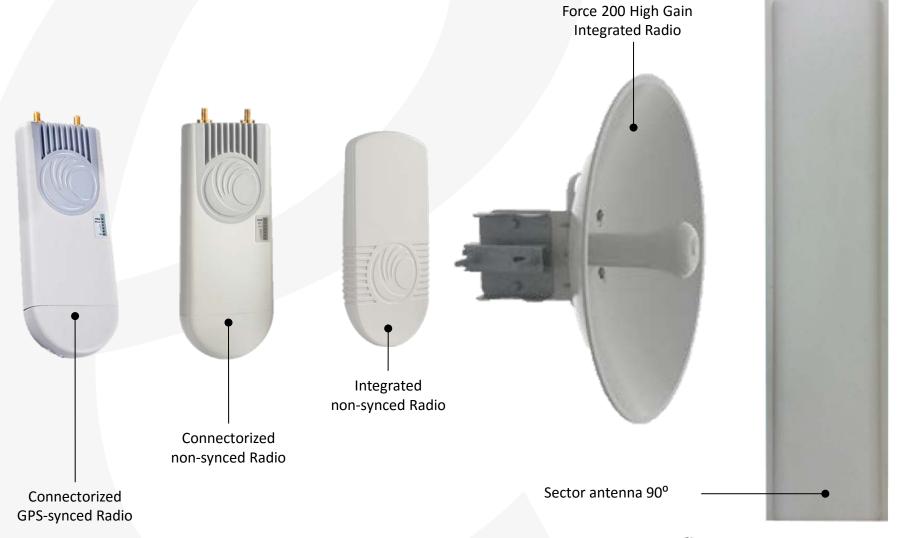
Mass Market PMP, ePMP Доступные сети доступа

Wi-Fi Сети доступа Wi-Fi

PTP450, PTP650, PTP8xx

PMP450, PMP450i

ePMP1000


R200, e400, e500

Портфолио 2,4 ГГц

Sector antennas 90° and 120°

Портфолио 5 ГГц

еРМР2000 (только 5 ГГц)

New sector antenna

Force200 (2.4 и 5 ГГц)

- 2402 2472 МГц; 4910 5970 МГц
- Интегрированная зеркальная антенна 18 дБи в 2.4 ГГц (17°х17°)
 25 дБи в 5 ГГц (7°х7°)
- Порт Gigabit Ethernet
- Дальность до 40 км
- Скорость до 200 Мбит/с
- Опция кожух
- Быстрая сборка!

Force180 (только 5 ГГц)

- Интегрированная антенна 16 дБи. Выигрыш 3 дБ по сравнению со стандартным абонентом (+40% к покрытию)
- Порт Gigabit Ethernet
- Полярность питания не важна, 10...30 В
- Регулируемый кронштейн в комплекте
- Горизонтальный дизайн для сужения главного лепестка в горизонтальной плоскости и повышения пространственной избирательности:
 - Горизонтальная: 15° / вертикальная: 30°

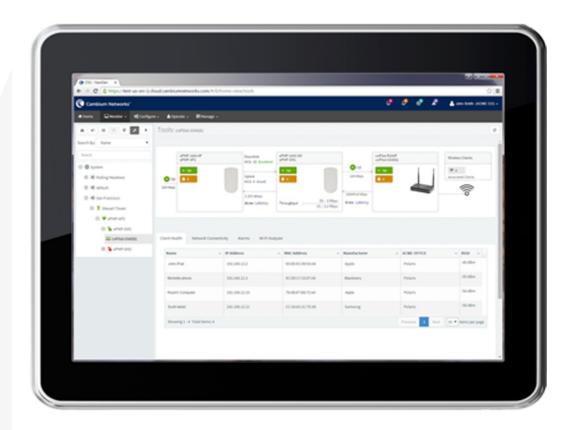
Аксессуары

Универсальное абонентское устройство cnPilot R200

- Wi-Fi 802.11n
- 2 телефонных порта
- 4 порта Ethernet
- 1 порт USB для сетевого хранилища или принтера

• РоЕ для еРМР

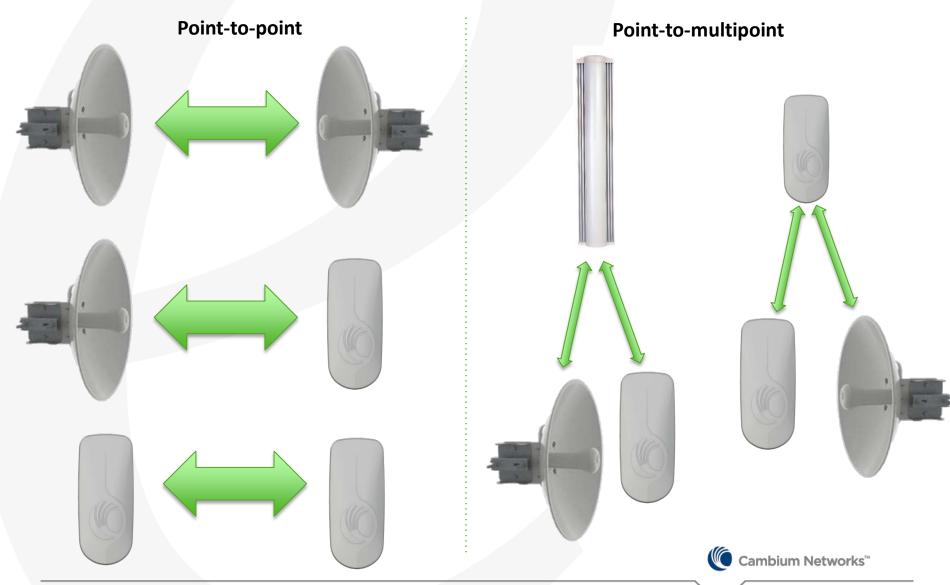
CNS Server – ПО управления сетью


- Мониторинг
- Обновление встроенного ПО
- Конфигурирование оборудования

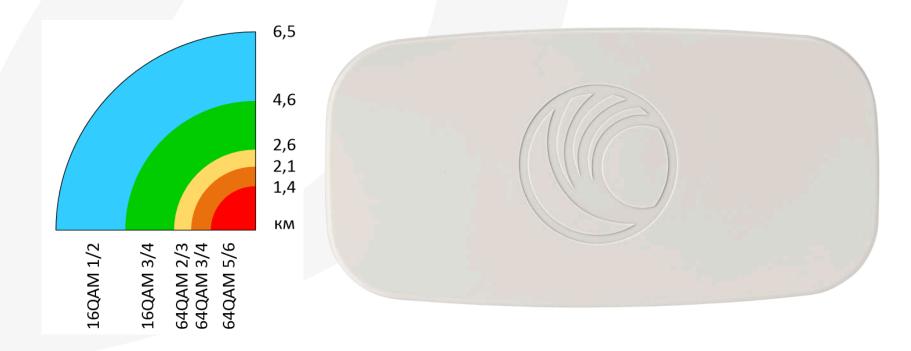
cnMaestro – облачная и локальная система управления

cnMaestro™ Integrated. Intelligent. Easy.

- Monitor
- Operate
- Configure
- Manage

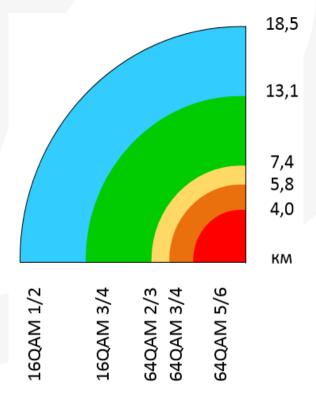

Your Network

Посетите <u>cloud.cambiumnetworks.com</u> для получения дополнительной информации.



Поддерживаемые конфигурации

Абонент Force180



Модуляция	Пропускная способность сектора при 50 абонентах, Мбит/с
64QAM 5/6 (MCS15)	88.0
64QAM 3/4 (MCS14)	78.0
64QAM 2/3 (MCS13)	70.5
16QAM 3/4 (MCS12)	51.5
16QAM 1/2 (MCS11)	34.5

Абонент Force200

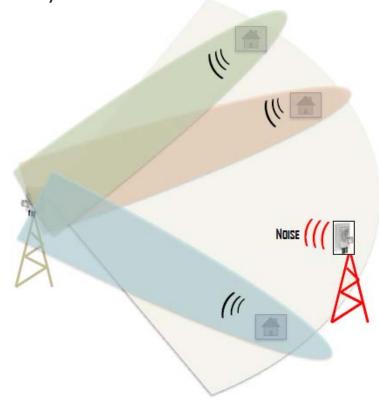
Модуляция	Пропускная способность сектора при 50 абонентах, Мбит/с
64QAM 5/6 (MCS15)	88.0
64QAM 3/4 (MCS14)	78.0
64QAM 2/3 (MCS13)	70.5
16QAM 3/4 (MCS12)	51.5
16QAM 1/2 (MCS11)	34.5

Основные спецификации

Parameter	Specification
Frequency Bands	5 GHz: 4900 – 5970 MHz 2.4 GHz: 2402 – 2472 MHz
Headline Throughput (40 MHz Channel)	200+ Mbps
Maximum # SMs	120
Maximum Tx Power	5 GHz – Global: 30 dBm (5.8 - 5.4), 27 dBm (5.2 - 5.1 GHz)* 5 GHz – FCC: 23 dBm (5.8), 14 dBm (5.4-5.2), 20 dBm (5.1) 2.4 GHz: 30 dBm*
Power Consumption	8.5 W Maximum
Environmental	-30C to +60C Operating Temp
Antenna Gains	Integrated: 16 dBi 12 dBi ePMP Force 25 dBi 90 deg Sector: 15 dBi 15 dBi 120 deg Sector: 14 dBi

Преимущества еРМР

Технология Hypure



Winncom Technologies

Hypure

• Супергетеродинный приемник (перестраиваемый фильтр) на прием и передачу

Управление диаграммой направленности антенны (только прием)



TDD/TDMA с поддержкой синхронизации

Как это работает у конкурентов...

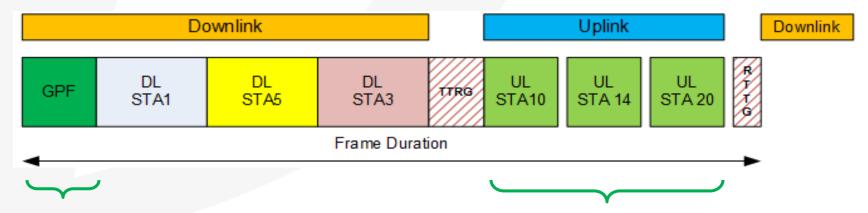
PD: Propagation Delay

PPD: Packet Preparation Delay

Poll: Poll Frame to Request STA to TX UL data

- Задержка распространения сигнала (PD) присуща каждой передаче, квитанциям АСК/NACK и повторным передачам в DL и UL.
- PD присутствует три раза для каждой передачи (Poll, data, ACK)

Чем мне это грозит?


- Индивидуальные задержки ведут к снижению общего канального времени, доступного для передачи данных.
- С ростом количества абонентов задержка растет в арифметической прогрессии, что существенно снижает пропускную способность.
- «Глухой» абонент может нарушить работу механизма ССА, вызвать повторные передачи и увеличить задержку для всего сектора.

Как это работает у нас

- Данные для/от всех абонентов плотно «упакованы» в UL & DL
- Задержка распространения до всех станций компенсируется защитным интервалом – TTRG

Широковещательное сообщение – расписание многим SM

Данные, квитанции, повторные передачи выстраиваются по расписанию и передаются вплотную друг к другу.

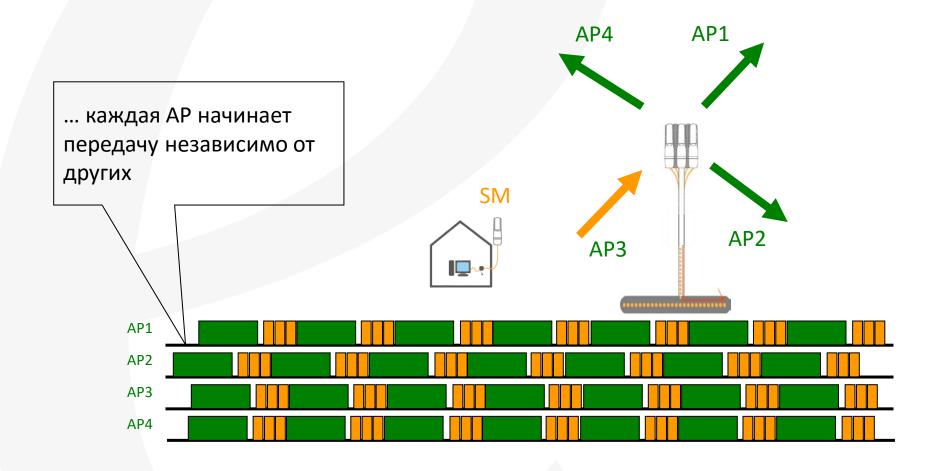
- Более эффективное использование доступной емкости канала
- Возможность наращивания числа абонентов без ущерба канальной емкости
- Сохранение стабильности даже в условиях помех

Как на счет внутрисистемных помех?

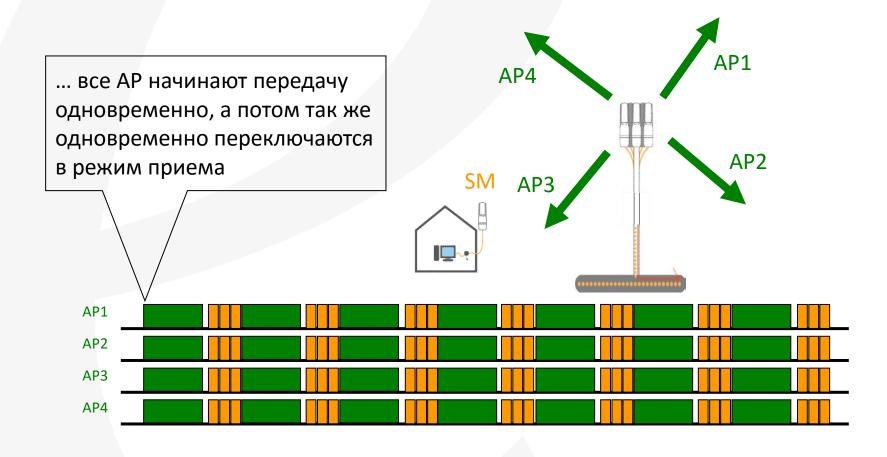
• Оборудование ePMP1000 способно синхронизировать соседние сектора между собой по сигналам GPS/Глонасс

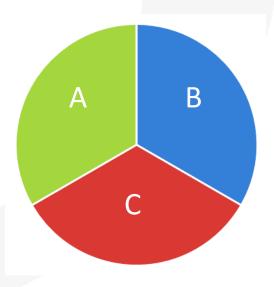
• Синхронизация возможно от встроенного приемника (модули с GPS-Sync), либо от внешних синхронизирующих устройств

(CMM)



• Синхронизация позволяет: а) снизить до минимума защитный интервал между смежными секторами (до 5 МГц); б) повторно использовать частоту в секторах «спина к спине»

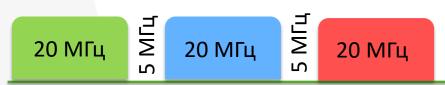

В сетях без синхронизации...


В сетях с синхронизацией...

еРМР экономит частотный ресурс

Сети конкурентов:

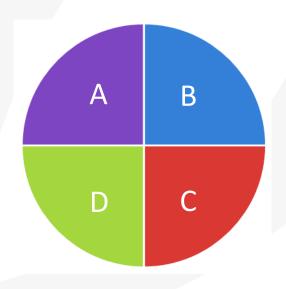
20 МГц

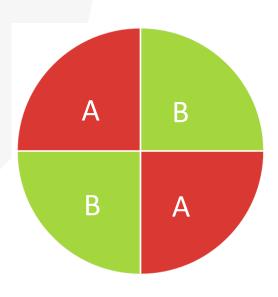

40 МГц

20 МГц

40 МГц

20 МГц


Сети еРМР:



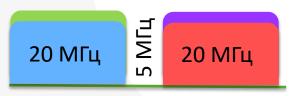
...вплоть до повторения частот на БС

Сети конкурентов:

20 МГц

40 МГц

20 МГц

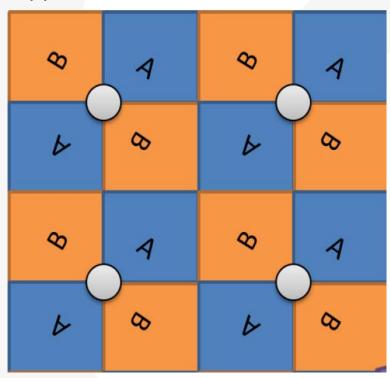

40 МГц

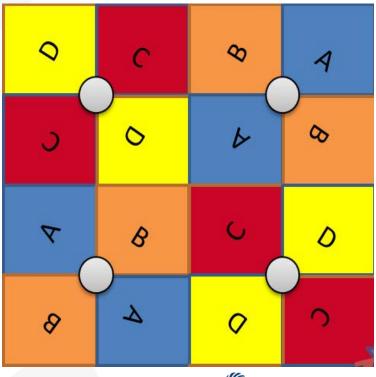
20 МГц

40 МГц

20 МГц

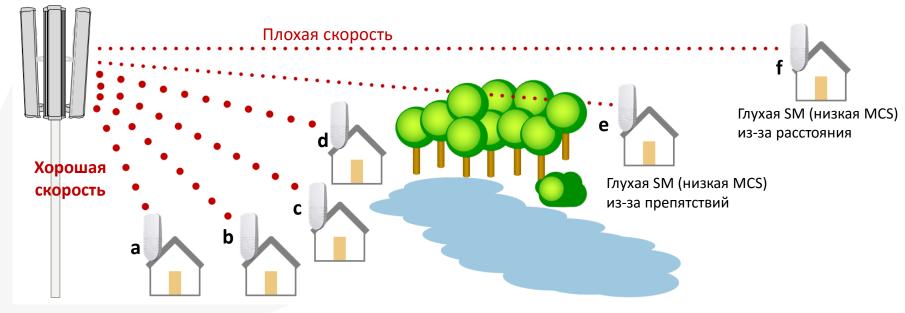
Сети еРМР:



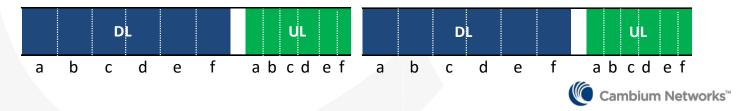


...и в пределах сети

- В ePMP возможно добавлять новые базовые станции с повторным использованием частот.
- В зависимости от плотности размещения БС рекомендуется одна из схем:



Адаптивный планировщик с контролем времени владения средой (Air fairness)



Справедливость по времени

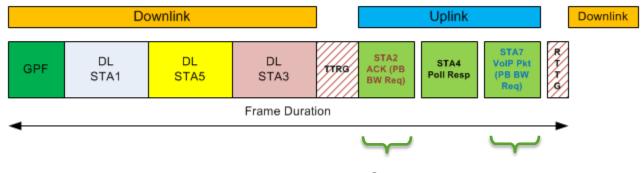
- Наш справедливый планировщик предотвращает снижение емкости сектора при появлении «глухих» станций
- «Глухая» SM может появится из-за большого расстояния, помех или препятствий
- Распределение ресурсов ведется основываясь на времени, а не пропускной способности

Приоритезация трафика и поддержка услуг Triple-Play

Данные + голос + видео

- Поддержка трех уровней приоритета (Voice, High, Low) на основе VLAN ID, DSCP, TOS, EtherType, MAC, IP
- Поддержка дополнительной приоритезации абонентского модуля
- Возможность шейпинга трафика на абонентских модулях (поддержание разных тарифов в пределах одного сектора)
- Поддержка IPTV на основе юникаста и мультикаста. Поддержка IGMP Snooping, MVR

Приоритезация и очереди


- У еРМР есть три очереди в радиоканале:
 - VoIP priority (только для пакетов меньше 220 Байт)
 - High priority
 - Low priority
- Когда пакет имеет классифицирующий признак, он направляется в назначенную очередь:
 - Признаки L2: VLAN ID, CoS, EtherType, MAC address
 - Признаки L3: IP address, DSCP
- Отдельно трафик Broadcast/Multicast может быть обслужен как High или Low Priority
- Когда радиоканал перегружен пакетами, и они начинают отбрасываться, планировщик старается сохранить VoIP & High пакеты за счет отбрасывания Low Priority
- Приоритезация работает в обоих направлениях: DL & UL
- Дополнительно можно назначить приоритет абонентскому модулю: Normal, High, Low

Внимание на голос

еРМР использует следующие механизмы по доставке голоса:

- Приоритезация голосового траффика в DL/UL
- Более частое выделение слотов для SM, обслуживающих голос
- Способность SM запрашивать сервис заодно с передачей основного трафика

SM может передать пакет данных или голоса, а заодно запросить сервис для передачи следующего голосового пакета. Это позволяет AP предоставить сервис такой SM быстрее.

Cambium Networks™

Мультикаст в радиоканале

- Мультикаст-трафик не имеет механизма квитирования, поэтому инфраструктура не в курсе, доставлен пакет или нет
- Разные SM, абоненты которых смотрят один и тот же ТВ-канал, часто работают в разных условиях радиовидимости (дистанция до БС, помехи, препятствия), что означает различные модуляции и интенсивность битовых ошибок.
- Поэтому подход «один к многим» не подходит для радио, потому что нет гарантии надежной доставки пакета всем участникам мультикаст-группы
- Наш метод передачи Reliable Multicast, что означает конвертацию мультикаст в юникаст с использованием механизма IGMP snooping
- Преимущества:
 - Квитанции в радиоканале
 - Возможность повторной передачи для конкретного абонента
 - Передача на высшей возможной модуляции для каждой SM

Большая емкость сектора

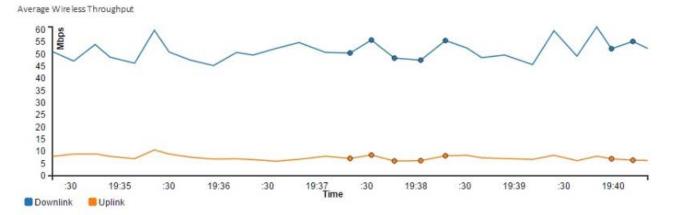
На что влияет масштабируемость?

Базовая станция на конкурирующей платформе

Базовая станция еРМР

120 абонентов на сектор!

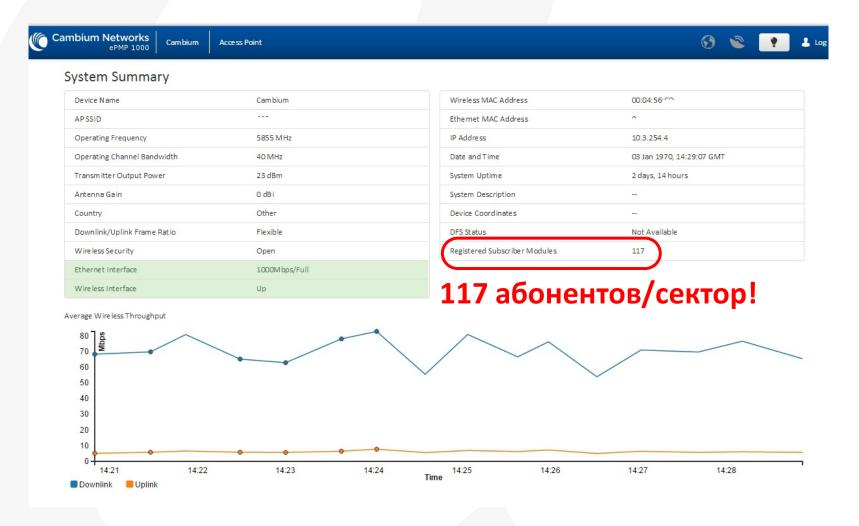
106 SM



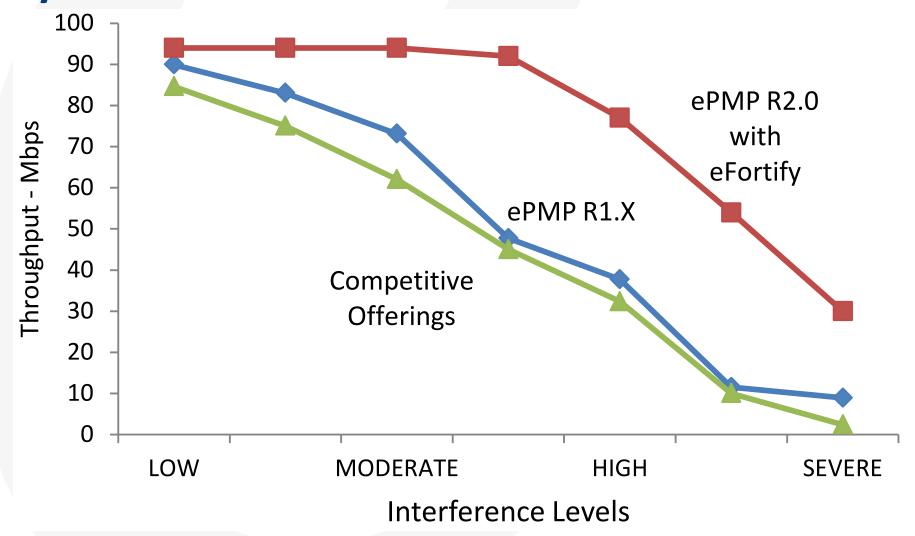
System Summary

Device Name	Cambium	
APSSID		
Operating Frequency	5865 M hz	
Operating Channel Bandwidth	20 MHz	
Transmitter Output Power	23 dBm	
Antenna Gain	0 dB i	
Country	Other	
Downlink/Uplink Frame Ratio	Flexible	
Wire less Security	Open	
Ethernet Interface	1000Mbps/Full	
Wire less Interface	Up	

Wireless MAC Address	•
Ethernet MAC Address	
IP Address	10.3.254.4
Date and Time	04 Jan 1970, 19:40:32 GMT
System Uptime	3 days, 19 hours
System Description	21
Device Coordinates	HT (
DFS Status	Not Available
Registered Subscriber Modules	106


106 абонентов/сектор!

117 SM



Работа в условиях помех

eFortify – комплекс мер, направленный на повышение пропускной способности в условиях помех

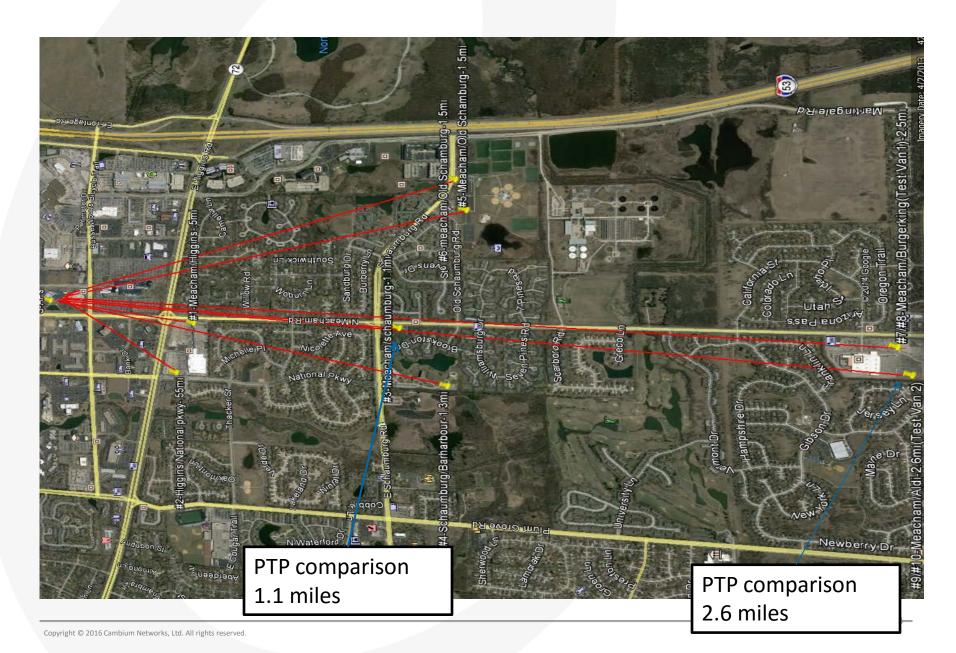
Outdoor Interference Testing: ePMP vs UBNT

- Head to Head testing of ePMP vrs UBNT
 - PTP (1 SM) and PMP (10 SM) Testing
 - Varying Interference Levels

ePMP:

- GPS Sync AP + 15 dBi Sector 90
- 10 Integrated SM
- Flexible Frame Ratio Mode

UBNT:


- Titanium AP + "19 dBi" Sector 90
- 10 NanoStation M5
- airMax Mode

Outdoor Testing – SM Locations

Measured Interference Levels

Location	CH = 5660 MHz	CH = 5735 MHz
AP – Zurich Tower	Avg = -90 , peak = -82	Avg = -77 , peak = -67
SM Locations	Avg = -75 to -90 Peak = -67 to -80	Avg = -65 to -80 Peak = -60 to -72

Moderate Interference

High Interference

~10 to 15 dB Higher

Point to Point Testing

- Low Interference SM location:
 - UBNT and ePMP have good comparable results

		Speed Test R	esults (Mbps)	
Distance	Ubiquiti		eP	MP
	DL	UL	DL	↓ UL
	61.67	17.03	54.47	26.33
1.1 miles	61.71	13.80	52.53	36.10
	68.22	14.74	51.99	33.31
	0.08	0.2	44.83	36.26
2.6 miles	0.5	0.4	42.00	32.69
	0.8	0.7	46.16	36.57

- High Interference SM location:
 - UBNT throughput near zero <u>double negative</u> impact of interference & retransmit collisions
 - ePMP throughput is excellent

PMP Testing – Case #1 Moderate Interference

CH=5660 MHz (DFS Band)

		Speed Test R	esults (Mbps)	
Distance	Ubio	quiti	eP	MP
	DL	UL	DL	UL
0.5 miles	9.98	6.61	10.11	21.09
0.55 miles	0.26	0.2	13.56	24.94
1.1 miles	1.3	22.09	8.04	22.2
1.3 miles	1.29	43.18	12.53	17.2
1.5 miles	0.08	0.11	8.57	15.67
2.6 miles	0.11	0.23	7.12	22.71
2.6 miles	0.08	0.26	7.2	13.03

Average 6.1 14.6

- ePMP had superior throughput in all cases except one
- ePMP Average tput >2X UBNT Average tput
- * Only 7 locations testing due to UBNT equipment restrictions

PMP Testing – Case #2 High Interference

CH=5735 MHz

	Speed Test Results (Mbps)			
Distance	Ubio	quiti	eP	MP
	DL	UL	DL	UL
0.5 miles	1.24	1.29	6.99	16.03
0.55 miles	0.06	0.14	10.5	30.95
1.1 miles	1.34	0.57	6.62	10.98
1.3 miles	0.27	1.73	5.66	5.91
1.3 miles	0.27	1.5	6.09	10.19
1.5 miles	0.06	0.02	6.49	16.33
2.5 miles	6.18	0.29	6.18	10.61
2.5 miles	0.05	0.02	5.84	9.7
2.6 miles	0.1	0.02	4.36	6.12
2.6 miles	0.09	0.04	4.14	5.72

Average 0.8 9.3

- ePMP tput reduced, but much higher than UBNT in all cases
- ePMP Average tput > 10X UBNT Average tput

Спасибо за внимание!

Вы можете получить больше информации о продуктах и решениях Cambium Networks в офисе Winncom Technologies

г.Ташкент, 100025, ул. А. Каххара, 6-й проезд, 35 +99871 150-39-39

sales.ca@winncom.com

